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Abstract 
An algorithm is described for calculating the maximum- 
entropy (ME) electron density map that is constrained to 
satisfy each of the observed structure-factor amplitudes, 
i.e. [Fh I - [F~'b~[ = 0. The use of these phaseless con- 
straints enables one to refine phases, and hence crystal 
structures, in terms of entropy. From the structure fac- 
tors observed with a small molecule as well as values 
extrapolated from them, numerical calculations were done 
at various resolutions. The algorithm can be used to ob- 
tain atomic models even with 1.5 A data, indicating that 
the ME method is a significant improvement over cur- 
rently available direct methods. For practical purposes, 
the present algorithm may be used as an alternative to 
successive Fourier refinements following the initial stage 
of approximate phase determination. 

Introduction 

Various probabilistic approaches to the phase problem in 
crystallography have achieved remarkable success in elu- 
cidating the crystal structures of small molecules directly 
from observed X-ray data [for a review, see Woolfson 
(1987)]. These direct methods, however, are not effec- 
tive for low-resolution structures with which fewer than 
half the theoretically measurable reflections in the range 
1.1 to 1.2 A are observable (Sheldrick, 1990). Thus, there 
has been much interest in the maximum-entropy (ME) 
nmthod, which is believed to have the potential to expand 
the ability of current direct methods and to be applicable 
to such low-resolution structures as proteins (see, for ex- 
ample, Collins, 1982; Bricogne, 1984). The key principle 
in the ME method is simple and all that is required is 
to find the ME density distribution among those that are 
consistent with whatever data are available. Thus, there 
are several ways of using the method in crystallography 
depending on the choice of which data and information 
are to be used. Thus far, the ME method has been most 
extensively studied on the map that is compatible with a 
set of phased structure factors, whose phases are already 
known or assumed (Collins, 1982; Wilkins, Varghese & 
Lehmann, 1983; Wilkins, 1983; Bricogne, 1984; Wilkins 
& Stuart, 1986; Gull, Livesey & Sivia, 1987). The primary 
interest here is in phasing as yet unphased reflections us- 
ing the Fourier components that the ME map contains in 
addition to those used in its construction. This 'phase- 
extension' scheme rests on the belief that the ME map 
should correspond to the 'true' or a 'more likely' structure. 
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However, this is not guaranteed by theory and remains to 
be demonstrated with actual crystallographic data (Livesey 
& Skilling, 1985). Phased ME calculations already carried 
out for proteins (Collins, 1982; Bricogne, 1984; Wilkins 
& Stuart, 1986) have shown significant improvements in 
the interpretability of maps. Although these results tend to 
indicate that the ME method is effective even at low reso- 
lutions, the maximization of entropy in these calculations 
was largely restricted by prior determination of the phase 
angles of the basis reflections, which were somewhat ar- 
bitrarily chosen. Clearly a different choice of phase angles 
could lead to a higher-entropy map, which might not nec- 
essarily be of good quality. 

The above discussion indicates that, in order to ex- 
amine whether the ME map corresponds to the correct 
structure, that is to say, whether entropy can be a reli- 
able figure of merit, we need to maximize entropy un- 
der phaseless constraints to refine phases simultaneously. 
An immediate choice for such a ME method may be to 
use a complete set of observed structure-factor amplitudes 
and to constrain the map to satisfy each of them, i.e. 
I F h l -  IF;~~I = 0. This ME calculation seems to be the 
most fundamental in crystallography in the sense that the 
observed data are fully utilized with no assumptions on 
phases. However, this has not been attempted for the fol- 
lowing reasons (Gull & Daniell, 1978; Wilkins, Varghese 
& Lehmann, 1983; Lemar6chal & Navaza, 1991). (i) Ob- 
served data are inevitably noisy and exact fitting of such 
data would introduce spurious details into the map arising 
from errors in the data. (ii) The existence of numerous sep- 
arate constraints results mathematically in a proliferation 
of Lagrange multipliers and computation of a solution be- 
comes unwieldy in all but the simplest cases. (iii) The ME 
calculation is expected to have a radius of convergence 
of the same order as those of other variational techniques 
such as least-squares refinements. When starting from out- 
side the radius, the least-squares refinements will converge 
to a local optimum, while the constrained optimization will 
not atways do so but may often diverge. (iv) Finally, when 
the Lagrangian approach is used, it is difficult to obtain 
a local maximum with a negative-definite Hessian. These 
reasons point to the difficulties involved in the ME calcu- 
lation, but this paper will show that they are not prohibitive 
for most practical applications. SjOlin, Prince, Svensson & 
Gilliland (1991) have solved an equivalent ME problem 
in which trial phase information is assigned in logarith- 
mic space, then members of the corresponding subset of 
structure moduli are fitted exactly. 

© 1992 International Union of Crystallography 
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A way to avoid the difficulties has been proposed (Gull 
& Daniell, 1978; Wilkins, Varghese & Lehmann, 1983) 
employing, instead of many individual constraints, a sin-. 
gle 'weak' statistical constraint El,[(IFhl--IFif f l ) / ,~h] 2 - 
c, c _< M, where M is the number of reflections used. Sim- 
ilar methods have been used in phaseless ME calculations 
(Bryan, Bansal, Folkhard, Nave & Marvin, 1983; Marvin, 
Bryan & Nave, 1987; Navaza, 1986). However, since any 
reduction of constraints may weaken the power of the ME 
method, such simplifications should be avoided if possible. 

Described here is a method developed for calculat- 
ing the ME map under the 'strong' constraints described 
above, which includes a simple algorithm that can mostly 
circumvent the difficulty of divergence. Numerical results 
are presented, demonstrating (i) how the method works, 
(ii) what ME maps are like at various resolutions, (iii) what 
will happen when sharpened data such as unitary structure 
factors are used and (iv) whether the method can be used 
to refine structures. Based on these, we discuss the rele- 
vance of the ME method to X-ray structure determination. 

provided the positive constant w is sufficiently large. This 
minimization may proceed as follows. First, keeping Ah 
at the current values, minimize H with respect to p,,. This 
is done pixelwise by the Newton/Raphson method using 
the derivatives 

NOH V-- .~ r / I lrT~ob~ 

= 2_.t h + IFhl)] V Opx ~, 
x exp (i~oh) exp (-27rih • x) (5) 

and 

N 0"2H 
v o;,,op~, = ~,,x,(1/t,x + .w), (o) 

where the approximation px - ~ l ,  F), exp(-27rih • x) is 
used to obtain the second derivative. Now we have new 
estimates for px: 

p"x <'W = px + [hl(p~x/PX) + wApx]l(llPx + w), (7) 

Method 
Consider a unit cell divided into equal pixels, with px 
being the average electron density of the pixel located at x. 
Structure factors are calculated as Fh = IFhl mr, ( # ' h ) -  
(V/N) ~ x  px e.xp (27rih • x), where V and N denote the 
cell volume and the number of pixels, respectively. Then 
find tl'ae maximum of a Shannon/Jaynes entropy (Shannon, 
1949; Jaynes, 1957) relative to a uniform distribution 
(p,, = e), 

S =  - ( V / U ) Z p x l n ( p x / e  ), (1) 
X 

under the constraints 

Yh - - I F h l -  IF~b~l-- 0, (2) 

where h comprises the set of reflections used, including 
000. If we follow the standard method, this constrained 
optimization problem may be solved by considering a 
Lagrangian L = S + ~--~'~h Ahgh, where Ah are Lagrange 
multipliers. Solutions to the problem can be obtained as 
stationary points of the Lagrangian, where OL/Opx = 0 
and OL/OAh = O. From the former condition, we have 

px = eXP[~h A,,exp(i~oh) exp(--27rih'x)] ; (3) 

the latter simply reduces to (2). We must then solve the 
nonlinear equations (2) and (3) simultaneously as func- 
tions of px and Ah, which is by no means a simple task. 
According to a constrained minimization method in gen- 
eral use (Hestenes, 1969), solutions to the present problem 
may alternatively be obtained by minimizing the measure 

H = - s  - Z A,, h + (w/2 )  (4) 
h h 

where 

p~ = exv [ ~  Ah exv (i~oh)exp (--27rih " x)] (8) 

and 

Apx ~_,( ':'~ = IF{, I--[fhl)exp(i~h)exp(--27rih.x). (9) 
h 

It should be noticed that, when updating Px, we must also 
do so with ~ol,. This minimization step is repeated until 
convergence is obtained. 

Next, we update Ah by new estimates that may be ob- 
tained by comparing the right-hand side of (5), which must 
have already vanished in the above minimization, with 
the following equation which the true solution (Px, Ah) = 

, A h ) should satisfy: 

lnp(x0) - Z A(0lh exp (i~,i~))exp (-27rih • x ) =  O, (10) 
h 

where the phases ~ol~ ) correspond to p~): 

ix""" Ah + "w(IF,~'b~l -- Ifhl) .  (11) h = 

The whole process up to this point is then repeated. If 
the final convergence is obtained, (11) guarantees that 
IF~,l = '~""~ Then (7) shows that px = p~, which .it h " 

indicates that p,, is a ME solution compatible with (3). 
This algorithm has several notable features. (i) The term 

w Y~'~h .q~, in H acts as a penalty function but the final re- 
suit, in principle, will not depend on the choice of the 
weight w (Ichikawa, 1975). This feature, however, will 
be modified by the algorithm used for avoiding the dif- 
ficulty of divergence, as will be described later. (ii) The 
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constraints can be exactly satisfied. (iii) Since H explicitly 
includes the entropy term, the entropy maximization will 
not stop even when the constraints are exactly satisfied. 
(iv) Since the algorithm for the constrained minimization 
is applicable to non-convex functions (Ichikawa, 1975), 
we can avoid the difficulty in obtaining a true local op- 
timum as encountered when the Lagrangian approach is 
used (Lemar6chal & Navaza, 1991). (v) All necessary cal- 
culations are done by fast Fourier transforms. 

Multimodality 
As mentioned in the Introduction, the ME calculation de- 
scribed above is not always convergent. This difficulty is 
related to the multimodality of the function H and is best 
illustrated by a centric reflection whose starting phase has 
been set incorrectly. Since the phase is constrained to have 
one of the two discrete values separated by 7r, it is obvious 
that the phase cannot be refined continuously, indicating 
that the initial and final statesbelong to different branches 
of the H surface. In such a case, the optimization may 
fail to bring the structure-factor amplitude of the reflec- 
tion close to the observed value and, consequently, (11) 
will accumulate differences, IF'¢i'b"l- IF~,I, of successive 
iterations in its Lagrange multiplier Ah, which eventually 
becomes large enough to give rise to a divergence. This 
consideration suggests a simple method for dealing with 
the divergence that uses the magnitude of Ah as an indi- 
cator for an incorrect phase: those reflections for which 
IAhl/IF;;~-'I is larger than a given threshold are excluded 
from the data set and, sometime later, are included again. 
This exclusion/inclusion algorithm introduces a disconti- 
nuity into the optimization and may facilitate the optimiza- 
tion path to switch to a nearby branch of H, which may 
be more preferable with respect to entropy, since, during 
the exclusion, the entropy term is dominant in H to some 
extent. The multimodality may not be specific to centric 
reflections but there must be acentric ones whose phases 
cannot be refined continuously. Therefore, the algorithm 
should be applied to every reflection in the data set. 

The threshold must be set at a sufficiently high value, 
otherwise most of the reflections will be excluded from 
the data set, leaving the optimization meaningless. Like- 
wise, starting phases have to be reasonably correct so that 
a substantial number of reflections can be used for the 
optimization. 

With this algorithm, the present method acquires some 
capabilities for exploring a region wider than the usual 
radius of convergence. However, the optimization, in gen- 
eral, will be trapped at local optima. Regarding this, the 
choice of the weight w in H plays a unique role; when we 
use a smaller value for it, the constraints 9h are less satis- 
fied at initial stages of optimization and, consequently, the 
exclusion/inclusion algorittun will more often be invoked 
to change the search path to a branch of higher entropy. 
Therefore, the optimization is more likely to converge to 
a local optinmm of higher entropy. On the other hand, a 
trial with a larger w tends to follow a path along which the 
constraints are satisfied more closely. Therefore, once the 

constraints are well satisfied, it would be rather difficult 
to jump to a branch of higher entropy. 

Implementation 
(a) Setting up the initial densities and Lagrange multipliers 

The initial densities px are calculated using a given 
starting set of phases, '4'h, and their observed structure- 
factor amplitudes as usual. Often some of the densities 
are negative or too small to evaluate 1/p,, in (7) and 

_ /~k  - 3  . hence they must be regularized: Px > 10 -4 e This 
regularization is also used in subsequent calculations. The 
initial Lagrange multipliers Ah are calculated from px 
using (3) as 

Ah = (V/N)Re [exp (-i'(al) E ln pxexp (27rih " x)] . 
X 

The estimates are necessarily crude because (3) applies 
only to the ME densities. 

(b) Phase-constrained ME calculation to refine the initials 
Before starting the phaseless (i.e. phase-unconstrained) 

ME calculation, we refine the initia! densities and multi- 
pliers by a ME calculation using the constraints 

P~ [F~, ~p( - i .q>) , ) ] -  I F;;~ I - o, 

each of which is one of the two constraints for a phased 
structure factor; the other constraint that we ignore is 
Im[Fhexp(--iq)h)] = 0 (Bricogne, 1984). This ME cal- 
culation can be done in the same way as in the follow- 
ing phase-unconstrained case; (7), (8), (9) and (11) can be 
used if ~h and IFhl in these equations are now understood 
to be Wh and Re [Fh exp(--i~',h)], respectively. The other 
details are the same as in the phase-unconstrained ME cal- 
culation. Usually ten iterations (see below) are sufficient 
to proceed further. 

(c) Phase-unconstrained ME calculation 
The starting densities and Lagrange multipliers are 

taken from the above calculation. The update of p,, by 
(7) is to be repeated at most five times if shifts of px are 
larger than 10 -~. Rigorous convergence of this step is not 
always required to update Ah by (11). With the process 
until the updating of Ah being defined as one iteration, 
300 iterations were performed in the following nun~erical 
calculations. 

(cO Exclusion~inclusion of incorrect reflections 
The exclusion/inclusion algorithm already described is 

used in the phase-unconstrained ME calculation: those re- 
flections with I,X~,I/IF?;b-'I > 10 are excluded from the 
data set and then included again with Ah = 0 when 
their calculated structure factors fall in the range 0.5 < 
IY~,l/IF;;b"l < 1.5. In preliminary runs, the algorithm 
seemed to be effective not only for dealing with the multi- 
modality but also for eliminating erroneous measurements. 
However, in some cases where the data set used was small, 
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we found that several significant reflections remained ex- 
cluded from the data set to the end of the optimization and, 
at the same time, entropy rose much higher than otherwise. 
Since this made it difficult to compare the entropies of 
different trials, the algorithm was used only in the first 
100 iterations and, in the remaining 200 iterations, all re- 
flections in the data set were always used, although this 
caused some trials to be divergent. 

(e) Dumping 
At the initial stages of the optimization, in both the 

phase-constrained and phase-unconstrained cases, errors in 
Ah are biased by the exponential function of (8), leading 
to absurd p~ values. Therefore, we restrict them in the 
range 10 -4 < p~ _< 10 z. However, no attempts are made 
to restrict Ah themselves. 

(f) Statistics 
The following values are calculated during and after 

the calculation. 

"--" - -  J " h  

h h 

= ,xl/E l,x.. 
x x 

sO = - E Px In Px, 
X 

where p,, = P, , /~xPx.  The R(px,p~) factor measures 
to what extent the constrained optimization has been 
achieved as it goes to zero at the optimum. The normalized 
entropy S O is linearly related to S in (1). 

(g) Computer program 
The algorithm was programmed as a module in the pro- 

gram system XtaI3.0 (Hall & Stuart, 1990). The essential 
part of our back-Fourier-transform routine was adopted 
from RFOURR, which was coded by Collins, Stewart 
& Holden (1990) and uses a set of Winograd Fourier- 
transform subroutines (Silverman, 1977). A correspond- 
ing forward-Fourier-transform routine was written after 
the method given by Ten Eyck (1985). All necessary data 
are stored in the core and no disk access is done during 
the iterations. Each run of the following calculations took 
a CPU time of 5-6 h on a VAX VS3100 workstation. 

Numerical calculations 

In order to exanaine how the present algorithm works 
and to study how the phaseless ME optimization affects 
the estimation of electron densities, numerical calculations 
were done using the data observed with U-deoxyadenosine 
(I) (Sato, 1984). 

NH 2 

O H  

(I) 

Crystal data: C10H13NsO3, monoclinic, P21, a = 
11.298(2), b = 10.393(2), c = 4.819(1)A, /3 = 
101.51(2) 0 , V = 554.5(2)• 3, Z = 2, F(000) - 
264, Mo K u  radiation, 2549 unique reflections measured 
(20 < 70°; sinO/A < 0.807A-1),  R = 0.038 for 2224 
observed reflections [I > 2¢z(I)]. 

The same data set as that used in the least-squares 
refinements was used with the scale factor obtained from 
the refinements. The pixel size was set to about 0.25/~ 
(45 x 42 x 20 pixels) and the optimization was started 
from the least-squares phases. 

First, we examined the effects due to the choice of w, 
the weight for the contribution from the constraints (nos. 
1-5 in Table 1). Final convergence was obtained with w 
larger than 5.0, although the convergence became slower 
as w increased. The constraints (1) were exactly satisfied 
up to R = 0.0000 and this was common to all the calcula- 
tions presented in this study. On the other hand, R(p×, P~x ), 
a measure that represents to what extent the constrained 
optimization has been achieved, showed a slight increase 
as w increased. This is probably due to numerical round- 
off errors involved in estimating (11). The Langrange mul- 
tipliers were generally small: for example, with solution 2, 
only 11 out of 2224 used reflections had IAhl/ '°~'~ I:~, I> 3.o 
with the highest being 6.8. 

We have obtained four solutions with w in the range 
5.0-40.0, among which three can be considered to be dif- 
ferent: (i) solutions 4 and 5 are essentially the same be- 
cause the Fh-weighted mean phase difference, {[A ~'h ]) --- 
Eh lYl;~'~llA:hl/Eh If;;b~l, is 0.170. (ii) all the centric 
reflections in solutions 4 and 5 have the same phase angles 
as those obtained by the least-squares refinements, while a 
weak centric reflection 600 underwent a phase change of 
7r with nos. 2 and 3, showing that the two sets of solutions 
belong to different branches of H; and (iii) it is not quite 
clear whether solutions 2 and 3 belong to different local 
optima well separated from each other but we assume so 
because <l±:hl) between them is not small (0.84°). 

Despite their differences in phases and entropies, all the 
ME maps thus obtained turned out to be almost the same. 
This is because the differences arose primarily from weak, 
less-significant, reflections: (IA~hl) between solutions 2 
and 5, for example, is 0.57 o for 59 strong reflections with 

F i  obs , [ > 20, which is compared to 2.10 for 636 weak 
o [ ) s  reflections with [Fi, [ < 2. Therefore, even if a 'dominat- 

ing structure' exists, the ME optimization with the strong 



846 MAXIMUM-ENTROPY METHOD 

Table 1. Statistics of phaseless ME calculations 

No. Fa/Uh ( B )  (A 2) w S o 

(A) 0.62 .A, resolution, sin e/)~ < 0.807 ,A, "1, 2224 reflections 

nlp~, p x) (l&ohl) (o)1. Fig. 

1 Fh 2.0 2.5 Oscillates 
2 5.0 9.3356 0.0005 3.2 
3 10.0 9.3355 0.0306 2.9 l(b) 
4 20.0 9.3349 0.0039 2.7 
5 40.0 9.3348 0.13018 2.7 
6* 10.0 9.3356 0.0008 2.9 

(B) 1.0 .~ resolution, sin 0/A < 0.500/~-1,620 reflections 

7 Ft, 8.0 10.0 9.7727 0.0031 16 3(a) 
8 20.0 9.7623 0.(XXr2 8.7 
9 0.0 10.0 9.0726 0.0002 2.9 3(b) 

10" 10.0 9.0717 0.13011 2.8 

(C) 1.5 A resolution, sm 0/A < 0.325 .~-t, 175 reflections 
11 Fh 15.0 10.0 10.0347 0.0031 38 2(b) 
12 20.0 10.0335 0.0327 34 
13 0.0 10.0 9.2556 0.O301 14 4(a) 
14" 10.0 9.1949 0.0304 20 
15 Uh 6.0 10.0 8.4826 0.0002 6.8 4(b) 
16" 8.4827 0.(LO9 6.8 

(D) 2.0 A resolution, sin 0/,~ < 0.250 .~.q, 86 reflections 
17 Uh 4.0 I0.0 8.5103 0.0032 19 5(a) 
18" 8.6846 0.0009 41 5(b) 

*Started from the phases calculated from a partial structure. 
]'The weighted mean phase difference compared with the least-squares phases. 

constraints will give many solutions of similar entropies, 
which differ only in the phases of less-significant reflec- 
tions. Although this feature might have arisen partly from 
exact fitting of erroneous weak measurements, it will not 
pose practical difficulties. 

A representative ME map (Fig. lb) corresponding to 
solution 3 is markedly different from the conventional 
Fourier map (Fig. la) calculated with the least-squares 
phases, despite the small differences in phases ((IAXT, h I) = 
3.7°). (i) Its background is everywhere positive (px _> 
0.002) and smooth. (ii) The peak heights of non-H atoms 
are 1.2-1.6 times higher than those of the usual Fourier 
map and it seems that larger peaks in the latter have been 
more enhanced. (iii) On the other hand, it seems that weak 
densities have been rather smeared out. Indeed, none of 
the H atoms are resolved. 

Low-resolution structures 

In order to examine how the ME optimization af- 
fects low-resolution structures, calculations were car- 
tied out by modifying the observed structure factors 
as  ] obs Fi, [exp(-B,~aa~2), where ~ = sin0/A. Since the 
Wilson plot gave B = 2.0/~2 with the original data, (B) 
[(B) = (B~,,Id + 2.0)/~, 2] stands for the overall tempera- 
ture factor. 

(a) 1.0/~ resolution. We used 620 reflections (s _< 
0.500/~-1) in ME calculations on a structure with (B) = 
8.0/~2, a value typical of the structures of this resolution. 
Again we obtained several solutions (nos. 7-8 in Table 
1), among which the one with the highest entropy had 
phase angles somewhat different from the least-squares 
ones ((IA~ohl) = 16°). Although its ME map (Fig. 3a) 
is interpretable, such density enhancenmnt at the atomic 

centers as observed with the high-resolution structure no 
longer took place. 

(b) 1.5/~ resolution. Similar calculations were done 
for a structure with (B) = 15.0A, 2. In this case, 175 
reflections w i t h ,  < 0.325/~ -~ were used (nos. 11-12 
in Table 1). The phase angles of the solution of the 
highest entropy were now quite different from the least- 
squares ones, (IzX~,l) being 38 °. Accordingly, its ME 
map (Fig. 2b) shows sizable deteriorations when compared 
to the corresponding conventional Fourier map (Fig. 2a): 
(i) the densities of small portions of the adenine ring have 
abnormally evolved and (ii) the molecular boundary has 
been obscured. 

The conclusion reached from these calculations together 
with those of the last section is that the ME maps are 
not the real or correct representation of electron densities 
but are subject to substantial deformations. At resolutions 
where individual atoms are resolved, the deformation takes 
place most noticeably at atomic centers, where the densi- 
ties are enhanced. However, it should be noticed that this 
enhancement by itself is not favored by entropy. Rather, 
the entropy is primarily concerned at these atomic resolu- 
tions to make the densities positive and smooth by adding 
unobserved higher Fourier components to them; the den- 
sity enhancement that we have seen in the ME map is 
probably a consequence of this action. It is for the same 
reason that phased ME calculations always make peaks 
sharp (e.g. Bricogne, 1984). On the other hand, at lower 
resolutions where only atomic groups rather than individ- 
ual atoms are recognizable, the density deformation takes 
place in a different way: the atomic groups are not em- 
phasized as a whole but only small portions of them are 
enhanced. At these resolutions, since the positivity of den- 
sities is easy to fulfil, entropy will reduce a region of 
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higher densities. It seems that a majority of higher den- 
sities are lowered at the expense of small portions of en- 
hanced higher densities. This deformation deteriorates the 
estimates of phases. 

Use of sharpened data 

It is customary in direct methods to use unitary structure 
factors Uh or normalized structure factors /~h instead of 
usual structure factors (Woolfson, 1987). This is primarily 
for mathematical convenience to make various probabilis- 
tic calculations feasible but it is possible that the use of 
such sharpened structure factors helps the direct methods 

c 
2 

(a) 

Fig. 1. 0.62 A resolution electron densities m the plane of  the adenine 
ring of 2'-deoxyadenosine. (a) Conventional Fourier density map 
calculated with the least-squares phases; (b) corresponding ME density 
map. Contours were drawn at the levels 4-0.1 X 1.5 n e ,~-3; positive 
contours solid; negative dashed. The figures were drawn using Xtai3.0 
(Hall & Stewart, 1990). 

to work. With this in mind, we have tried the ME opti- 
mization using sharpened data. 

(a) 1.0/~ resolution. First, we carried out ME cal- 
culations with the 1.0t t, data on a structure for which 
(B} - 0.0/~ 2 (no. 9 in Table 1). This trial is .equiva- 
lent to doing the same calculation as that in the last sec- 
tion but with the observed structure factors sharpened by 
~xp (8.0J) .  In this case, the densities at the atomic cen- 
ters have been significantly enhanced (Fig. 3b) and, ac- 
cordingly, the obtained phases are now remarkably close 
to the least-squares ones (([A~hl) - 2.9°). 

(b) 1.5 ]~ resolution. Similar calculations were carried 
out with the 1.5/~, data (no. 15 in Table 1). The obtained 
ME map (Fig. 4a) again shows significant improvement 

(a) 

(b) 

Fig. 2. 1.5 ,~ resolution electron denslUes, fa) Coi~vent~onal Fourier 
density map calculated as described m Fig. l(a) but with the overall 
temperature factor (B} = lb.0 ,~2: (bl corresponding ME density 
map. For other details, see Fig, 1. 
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in interpretabili ty compared  with the corresponding ME 
map (Fig. 2b), which  was obta ined with unsharpened 
structure factors. However ,  as the phases are not as close 
to the least-squares ones ((IA~hl) = 14°), the centering 
of  densit ies on the atomic centers is moderate.  

(c) Use of unitary structure factors; 1.5 A resolution. 
Next, we at tempted to use unitary structure factors. How-  
ever, since the densit ies corresponding to point atoms were 
too abrupt to do realistic calculations, it was necessary to 
blur the unitary structure factors as IU/~U~loxp (-(B)~ ~) 
(when Uh is used, the symbol  (B)  is used with fltis mean-  
ing). It was also necessary to attenuate shifts of  Ah for 
h igh-angle  reflections. This was done  by applying an at- 

tenuating factor e x p ( - B a t t ~  :~) to w in (11), B~,tt being 
chosen so that the factor is 1/4 a! the upper limit of  
for the data used. ME calculations were done  with the 
1.5 A [q, data blurred by (B)  = 6.0 A 2 (no. 15 in Table 
1). The obtained ME map is shown in Fig. 4(b). Now all 
the atomic sites are clearly visible, al though some of  them 
are slightly misplaced. Accordingly,  the phases are nearly 
correct ( ( IA~hl )  = G.8°). 

(a n) 2.0 A resolution. Similar calculations were  made  
with 2 .0A Uh data (86 reflections) blurred by (B)  = 
4.0 A 2 (no. 17 in Table 1). The obtained ME map (Fig. 
5a) is interpretable to a large extent but the phases are not 
so correct ((IA~,h[) = 14°). 

(a) 

(b) 

Fig. 3. 1.0 A resolution electron densities. (a) ME density map cor- 
responding to a structure with (B) =- 8.0 A2: (b) ME density map 
corresponding to a structure with (B) = 0.0 h2. These figures demon- 
strate that the use of sharpened structure factcrs effectively increases 
the resolution of the ME map. For other details, see Fig. 1. 

--> 

(a) 

? 

(b) 

Fig. 4. 1.5 ~ resolution electron densities. (a) ME density map corre- 
sponding to a structure with (B) = 0.0 A2: (b) ME density map 
calculated with Iu~b~lexp (-6.0s 2). These figures demonstrate how 
the use of sharpened structure factors affects 1.5 A ME densities in 
two different ways. For other de'tads, see Fig. 1. 



terpretable solution but is utterly meaningless. It should be 
noted that the 'correct' solution contains three reflections 
with I,~,l/Iri2~-'l > 10, while none of the reflections used 
with the other, meaningless, solution have a value larger 
than 7. It seems, therefore, that a solution of lower entropy 
involves larger Lagrange multipliers. 

Interestingly, in the successful cases the density en- 
hancement at atomic sites always takes place, while this is 
not so in the unsuccessful cases. Therefore, it seems tllat 
the enhancement indeed helps the entropy of the 'correct' 
structure to be discriminating. 

As envisaged in the beginning, the use of sharpened 
structure factors did indeed enhance the phasing power 
of the ME method. However, we do not expect that we 
can go much further with tlgs technique. Indeed, it was 
possible to obtain ME solutions with IU/;~'~'l not blurred 
when the resolution of the data was lower than 2.5 A 
(46 reflections or less) but none of the solutions were 
interpretable or of atomic resolution. This indicates that (i) 
even if there were to exist a local optimum corresponding 
to the correct structure, its entropy could not be higher 
than those of the meaningless solutions and (ii) the use of 
unitary structure factors does not ensure the point-atomic 
resolution of densities. 

Structure refinements 

Thus far, the ME calculations have always started from the 
correct least-squares phases. Now let us examine whether 
the present algorithm has the capability of heuristic search- 
ing in structure determination. The algorithm is not well 
suited for doing ab initio structure determination so what 
we are going to attempt is to obtain the correct structure 
by starting from a partial structure, which consists of the 
14 skeletal atoms of the two rings of 2'-deoxyadenosine, 
about 3/4 of the whole molecule. The structure gave 
R = 0.29 and the starting phases calculated from it devi- 
ated from the correct ones by, for example, ([A~ohl) = 29 ° 
for the 1.5 A data. 

This problem would be trivial if we applied successive 
Fourier refinements to high-resolution data. Yet it is worth- 
while trying it for the following reasons: (i) even with the 
Fourier technique, structure refinements would not be so 
trivial when data are of resolution as low as 1.5 A because 
reconstruction of a structure in terms of atomic models, as 
required by the technique, is not always straightforward at 
these resolutions; (ii) in view of variational calculations, 
it is worthwhile trying the problem because the starting 
phases of 19 centric reflections (~ < 0.807 A -1) have to 
be changed to reach the correct solution; and (iii) the trial 
should provide some information as to what extent the 
optimum solutions obtained in the last three sections are 
dominant in a wider domain. 

We succeeded in recovering the 'correct' structures cor- 
responding to Figs. l(b), 3(b) and 4(b) (the results are 
listed as nos. 6, 10 and 16 in Table 1, respectively). This 
indicates that the entropy of each of these structures dom- 
inates the domain to the extent that all necessary branch- 
ings take place through the exclusion/inclusion algorithm. 
On the other hand, a trial corresponding to Fig. 4(a) con- 
verged to a local optimum of lower entropy (no. 14 in 
Table 1), indicating that the domination of the 'correct' 
solution is not sufficient. Although the obtained ME map 
(not shown) is still interpretable, one of the atoms (CI') 
is appreciably misplaced. 

Another situation was revealed when we did a calcula- 
tion corresponding to the 2.0 A structure (Fig. 5a), which 

rrob~ blurred by (B) = 4.0 A 2 was obtained by using '-'h 
The ME structure now obtained (no. 18 in Table 1; Fig. 
5b) has an entropy much higher than that of the other in- 

x~ 
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(b) 

Fig. 5.2.0 A resolution electron densities. (a) ME density nlap obtained 
with IU~b~lexp(--4.0s 2) by starting from the least-squares phases; 
(b) ME density map obtained in the same way but now starting from 
the phases calculated from a partial structure. Note that the latter has 
a higher entropy than file former but is not interpretable. For other 
details, see Fig. 1. 
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Discussion 

We have seen that the ME optimization by no means 
points to the real or correct representation of electron 
densities but that the densities are subject to substantial 
deformations. However, the phases of the reflections used 
are kept close to the correct ones when the resolution of 
observed data is high enough to resolve individual atoms. 
This is because, at these resolutions, the deformation takes 
place primarily at atomic centers, where the densities are 
significantly enhanced. It is probable that this deformation, 
in turn, helps the entropy of the structure to dominate over 
the other local optima, the domination being the major 
source of power for driving phases to the correct ones. 
On the other hand, at lower resolutions where only atomic 
groups rather than individual atoms are recognizable, the 
ME optimization causes deterioration of the estimates of 
both densities and phases. 

When sharpened structure factors rather than the usual 
structure factors are used, the resolution of ME maps is 
effectively increased and, accordingly, the phasing power 
of the ME method is increased. With this technique, we 
have succeeded in obtaining the correct atomic structure 
even with 1.5 A data. Also it should be noted that, where 
the ME method is effective, the obtained phases are much 
more accurate than those obtained by currently available 
direct methods. These results strongly suggest that the ME 
method is more effective than direct methods. 

We have demonstrated that entropy can be used as a 
reliable figure of merit for structures whose resolution is 
higher than 1.5/~, provided observed structure-factor am- 
plitudes are sharpened. On the other hand, we have seen 
that the ME method is rarely effective for structures of 
resolution lower than 2/~. Nevertheless, there is a pos- 
sibility that the method might work differently when ap- 
plied to the structure of macromolecules. This is because 
a large amount of solvent specific to such structures con- 
stitutes a wide background, which would pose additional 
restrictions on the phases (Wang, 1985). A test ab initio 
ME calculation on a protein by Sj01in, Prince, Svensson 
& Gilliland (1991) led to an essentially correct structure 
but the polypeptide chain had been broken up into frag- 
ments. A similar fragmentation resulted with a phaseless 
ME calculation on a virus structure (Marvin, Bryan & 
Nave, 1987). These deteriorations are probably of the same 
nature as those found with the low-resolution ME struc- 
tures obtained in the present study. In such situations, the 
ME method might be of limited use. 

The various features we have found with the ME opti- 
mization bear close resemblance to those of direct meth- 
ods. It has been argued that the ME method, in fact, is 
a more rigorous extension to the current probabilistic di- 
rect methods on the basis of probability theory (Wilkins, 

Varghese & Lehmann, 1983; Bricogne, 1984; Livesey & 
Skilling, 1985). If the ME method has indeed captured 
the essential aspects of direct methods, the present results 
should give some answers to questions such as why the 
methods do not work with low-resolution structures and 
SO on. 

The ME method is a kind of variational density- 
modification technique (Navaza, Castellano & Tsoucaris, 
1983; Collins & Mahar, 1983; Main, 1990). Such calcula- 
tions are becoming increasingly feasible with the availabil- 
ity of fast computers. The primary interest here is in ob- 
taining interpretable density maps out of less-interpretable 
ones without manual intervention. One of the difficulties 
in these calculations is that all practical trials start from 
outside the radius of convergence. Our exclusio~ginclusion 
algorithm provides a useful means for it and the present 
alogrithm adopted for the constrained optimization may 
be used for evaluation functions other than entropy. 
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